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A STUDY OF THE OPrIMUM TRANSVERSAL CONTOUR

OF A BODY AT HYPERSONIC SPEEDS USING DIRECT METHODS

by

ANGELO MIEL*

SUMMARY

This paper refers to a slender conical body whose length and base

area are given and considers the problem of determining the transversal

contour which minimizes the overall drag (sum of the pressure drag and

the friction drag) under the assumption that the pressure coefficient

satisfies Newton's impact law and that the friction coefficient is con-

stant. Direct methods are employed, and the analysis is confined to a

body whose cross section is either a regular polygon or is composed of a

basic circle external to which are symmetric segments of a logarithmic

spiral. The analysis shows that the optimum solution is governed by the

friction parameter Kf, a parameter which is proportional to the ratio of

the friction coefficient to the cube of the average thickness ratio of the

body.

For the class of pyramidal bodies, the optimum transversal contour

is a triangle for Kf Z 0.47 and a circle for Kf > 1. For intermediate

values of the friction parameter, the optimum number of sides n satisfies

the inequality 3 < n < - and is such that the friction drag is twice the

pressure drag.

(')Director of Astrodynamics and Flight Mechanics
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For a body whose cross section is a circle with n symmetric arcs

of a logarithmic spiral superimposed, the optimum number of segments n

depends not only on the friction parameter but also on the ratio of the

highest to the lowest radius of the cross section. If the value of this

ratio is two, the optimum number of segments satisfies the inequality

2 < n < - for Kf Z 0.9 and is such that the friction drag is twice the

pressure drag; it decreases as the friction parameter increases and be-

comes n z 2 for Kf 0.9. For any higher value of the friction parameter,

the optimum number of segments remains equal to two.

Finally, the simultaneous optimization of the longitudinal and trans-

versal contours is considered in the appendix in connection with a power

body with a polygonal cross section. While the results relative to the

transversal contour are identical with those obtained for conical bodies,

the longitudinal contour changes to a considerable degree depending on the

friction parameter. This contour follows the 3/4-power law for Kf a 0, is

convex for 0 < Kf Z 0.47, is a straight line for 0.47 Z Kf < 1, and is con-

cave for Kf >1.
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1, INTRODUJCTIONI

In a recent paper (Ref. 1), Chernyi and Gonor investigated the si-

multaneous determination of the longitudinal and transversal contours of

the three-dimensional body minimizing the drag at hypersonic speeds for

the case where the length is prescribed, the base area is prescribed, and

its contour is required to lie outside a circle of radius ro. They re,

stricted the analysis to the class of bodies which are slender in the

longitudinal sense and homothetic in the transversal sense, that is, such

that each section perpendicular to the undisturbed flow direction is geo-

metrically similar to any other. They employed two basic hypotheses:

(a) the friction drag is neglected; and (b) the distribution of pressure

coefficients is governed by Newtonls impact law. Because of these hy-

potheses, they were able to separate the problem of the optimum longitudinal

contour from that of the optimum transversal contour, to show that the

optimum longitudinal contour follows a 3/4-power law, as well as to show

that the optimum transversal contour has a starlike configuration. These

authors also found that the drag coefficient decreases monotonically as

the number of segments n composing the star increases; that, if n is in

the order of 10, the drag coefficient is in the order of one-tenth or less

of the drag coefficient of the equivalent body of revolution; and that, if

the limiting process n -. is carried out, the drag coefficient of the opti-

mum body tends to zero.

Owing to the nature of these results, a reexamination of the basic

hypotheses is in order, that is, (a) neglecting the friction drag and

(b) employing Newton's law in determining the pressure coefficients. While
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the discussion of the validity of Newtonts impact law is left to a forth-

coming paper, the following sections are concerned with the effect of the

friction drag on the optimum transversal contour. To do this, Newton's

impact law is retained for the distribution of pressure coefficients while

the friction coefficient is regarded to be constant everywhere. Further-

more, direct methods are employed, and the analysis is confined to the

class of bodies (a) which are conical in the longitudinal sense and (b) which,

in the transversal sense, are either polygonal or composed of a basic circle

with symmetric arcs of a logarithmic spiral superimposed.
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2. DETERMINATION OF THE DRAG

Consider two systems of coordinates: a Cartesian coordinate system

x, y, z and a cylindrical coordinate system p, e, z. With regard to the

Cartesian coordinate system, the z-axis is identical with the undisturbed

flow direction, and the xy-plane is perpendicular to the z-axis. For the

cylindrical coordinate system, p is the distance of any point from the

z-axis, and e measures the angular position of this point with respect to

the xz-plane (Fig. 1). Next, restrict the analysis to the class of bodies

which are homothetic in the transversal sense, that is, those bodies whose

shapes can be expressed in the form

*(p, e, z) m p - r(e) f(z) = 0 (1)

where f(z) is a function describing the longitudinal contour and r(G) is

a function describing the transversal contour. Clearly, each cross sec-

tion is geometrically similar to the base contour. If the length of

the body is denoted by f and if the coordinates p and z are measured in terms

of 1, the base contour is described by z = 1. Furthermore, if the function

f is chosen in such a way that f(l) = 1, then the equation r(e) represents

the transversal contour of the base in polar coordinates.

Now, denote byu , U , Uz the unit vectors of the cylindrical coordi-

nate system, and observe that the direction of Zz is the same as the un-

disturbed flow direction. Also, denote by n the unit vector normal to the

infinitesimal element of dimensionless wetted area da, and assume that ra is

positively oriented outward. Consequently, the aerodynamic drag per unit

square length and dynamic pressure is given by
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K .- ff [- Cn + CfI;; x;a1] da (2)

where

Cp - 2(- - ;z)2 (3)

is the pressure coefficient associated with Newton's impact law and Cf

is the friction coefficient (assumed constant everywhere).

Since the unit vector n is perpendicular to the surface of the body,

its direction is identical with that of the gradient of the function $.

Hence, the relationship

n 14 (4)

holds. After it is observed that

+ +± (5)

and after Eq. (1) is accounted for, one deduces that

U'-( (/r) - rf~ (6)
ffi ( 6 )

.'/. + (i /r)2 + (rf)

where

ff dr " d f1 ' f

i
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After the infinitesimal element of wetted area is written in the form

d= rf dedz (8)

and after Eqs. (2), (3), (6), and (8) are combined, laborious manipulations

lead to the expression

K D _f 4[ 2 + Cfrf% +Ti/r)l dzde (9)
0o 1 + (i'/r) + (rf) J

which reduces to

. Cff [r f ZR +- dzde (10)

if the slender body approximation

r)2  <1€)

is employed.

Consider, now, the class of bodies which are conical in the longi-

tudinal sense and, for that reason, are represented by

f(z) - z (12)
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Since f = 1, Eq. (10) simplifies to

KD n P+ %f (13)

where

• 2 ry r6

K~p O r -7 -' ' d O

(14)

rf ~ATde

Several particular cases are now considered. For all these cases, the drag

(13) will be calculated in combination with the dimensionless base area

3 = r rdO (15)
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3. CIRCUIAR CONTOUR

For a circular cone, the base contour is described by

r = Const (16)

which implies that f - 0. Since the dimensionless drag integrals and

base area are given by

KJp = 2,mr 4

K Df = fim (17)

=

the drag per unit square length and dynamic pressure becomes

K D - rr(r 3 + Cf) (18)

and can be rewritten in the form

K = 2 (l + 2K) (19)D Tr f

where

Kf = 7- (5/2 (20)

denotes the friction parameter. This parameter is proportional to the
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ratio of the friction coefficient to the cube of the thickness ratio and,

hence, is a measure of the relative importance of the friction drag with

respect to the pressure drag.



4. POLYGONAL CONTOUR

If the transversal contour of the body is a regular polygon with n

sides, the equation of each side can be written in the form

r cose = r (21)

where r denotes the minimum radius and 9 an angular coordinate which is

measured from the r -direction and is valid in the interval
0

-- + B (22)n n

After the definition

1417d/ -2 tan (23)
.acos2 e

is introduced and it is observed that

K nr 4I 4 tan I
p 0 1 0 a

K =nC fr.o 24Df = I - nCfro tann (24)

2

s = nr 0 nr 2  tan_
t rl a n 0  n

the drag per unit square length and dynamic pressure becomes



12

K= nro(2r3 + Cf) tan- (25)

and can be rewritten in the form

2- + 2Kg) (26)

In this equation, the friction parameter Kf is defined by Eq. (20), and

the auxiliary variable x is defined as

x R tan- (27)Tr n

and, therefore, is monotonically related to the number of sides in the

interval of interest 3 - n . This means that the variable x satisfies

the inequality(*)

1 g x !C 3j (28)

with the lower bound corresponding to n = and the upper bound correspond-

ing to n = 3.

(*)The limitation n ! 3 is imposed in order to insure that the length

of the sides of the polygon be finite. Theoretically speaking, however,

one can conceive the possibility that n = 2; obviously, the area enclosed

by this special polygon would be finite only if each side were infinitely

long.
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It is of interest to evaluate the ratio of the drag of the pyramidal

body to that of the equivalent body of revolution (subscript R), that is,

the body of revolution of equal length and base area. This ratio is given

by

D I+ 2K fxIl (29)
x(1 + 2Kf)

and, for a given friction parameter, varies with the auxiliary variable x

and, hence, with the number of sides of the cross section. It is inferred

from Eq. (29) that there exists a particular value of x (and, hence, a

particular value of n) which minimizes the drag ratio. This particular

value is defined by

x W - (30 )

K f

and implies the following: the optimum number of sides is such that the

friction drag is twice the pressure drag. This optimum number of sides

can then be obtained from the expression

Kf= cot 1]/2 (31)

and the associated drag ratio is

D 3Kf 2 3  
(32)

5R I + 2Kf

providing that
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5 !5Kf -S (33)

9 5 f

Should the friction parameter not satisfy the inequality (33), then the

optimum solutions would be as follows:

Kf n =3 (34)

x = 1

Kf I U n =3 (35)

D
-1D R

In closing, it is worth noting that some work on this special problem

was done previously by Toomre (Ref. 2) without using the slender body ap-

proximation. His numerical results were governed by a two-parameter family

of solutions, the parameters being the friction coefficient and the average

thickness ratio. As the analysis of this paper shows, the slender body

approximation reduces the number of independent parameters to one, namely,

the friction parameter Kf which combines the effects of the friction coef-

ficient and thickness ratio.
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5. LOGARITHMIC SPIRAL CONTOUR

It is now assumed that the transversal contour is a circle of radius

r with n symmetric segments of a logarithmic spiral superimposed. In

polar coordinates, the equation of each of these segments is given by

f = * K (36)
r

where K is a positive constant and where the dot sign denotes a derivative

with respect to the argument 0. If r denotes the maximum radius and if thea

angular coordinate e is measured from the r -direction, then Eq. (36) isa

valid in the interval

- (37)n n

with the understanding that the positive sign preceding K is to be employed

for negative values of e and the negative sign, for positive values of 9.

Consequently, integration of Eq. (36) yields the following relationship be-

tween the parameter K, the number of segments n, and the ratio y = rin/ro of

maximum to minimum radius

K = n log y (38)
IT

After the integrals (14) and (15) are evaluated, the following results

can be readily obtained:
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4
TW 4

KDf =21w+D.2) log y

log Y

Consequently, the drag per unit square length and dynamic pressure becomes

~2S2  a 2 (40)

where

2
- log y

y -1

(41)

In this equation, the friction factor Kf is defined by Eq. (20) and the

auxiliary variable x is defined as

X =1I+ K=1+ (U log )2 (42)

and is, therefore, monotonically related to the number of segments compos-

ing the body in the interval of interest 2 s n ! -. This means that the

variable x satisfies the inequality

!
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!C x!C (43)

where

S+ 4 log(44)

IT

and where the lower bound corresponds to n = 2 and the upper bound, to

n n 00,

It is of interest to evaluate the ratio of the drag of this body to

that of the equivalent body of revolution (subscript R). This ratio is

given by

D + 2Kf x(4

FR xU + 2Kf)

and, for each given value of y, attains a minimum for the value of x de-

fined by

Once more, the optimum number of segments

loTy /(23 1(47)

is such that the friction drag is twice the pressure drag; the associated

[drag ratio is then

I
!
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FR

providing that

K f 19 (49)

Should the friction parameter not satisfy inequality (49), then the

optimum solution would be as follows:

x ay

f n 2 (50)

D o + 2Kf WA

DR Yf(l + 2 K f)
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6. DISCUSSION AND CONCLUSIONS

The results of the previous analysis are summarized graphically in

Figs. 2 through 5, with Figs. 2 and 3 pertaining to a pyramidal body and

Figs. 4 and 5 pertaining to a body whose cross section is a circle with

n symmetric arcs of a logarithmic spiral superimposed. These graphs show

that (a) the optimum configuration depends strongly on the friction parameter,

and (b) that, for practical values of Kf, the amount of drag reduction is

much smaller than that predicted when friction is neglected.

With regard to specific details, Fig. 2 shows that the optimum trans-

versal contour of a pyramidal body is a triangle for Kf Z 0.47 and a circle

for Kf > 1. For intermediate values of the friction parameter, the optimum

number of sides satisfies the inequality 3 < n < a and increases as the

friction parameter increases. As long as Kf < 1, the drag of the optimum

pyramidal body is smaller than that of the equivalent body of revolution

(Fig. 3); the drag reduction depends on the friction parameter and is in

the order of 20% for values of Kf around 1/5.

For a body whose cross section is a circle with n symmetric segments

of a logarithmic spiral superimposed, the optimum number of segments de-

pends not only on the friction parameter but also on the ratio of the mai-

mum to the minimum radius of the cross section (Fig. 4). For this reason,

the following considerations refer to one particular case, that in which

y n 2. For Kf Z0.9, the optimum number of segments satisfies the inequality

2 < n < -. As the friction parameter increases, the optimum number of seg-

ments decreases and becomes n = 2 for Kf 0.9. For any higher value of

the friction parameter, the optimum number of segments remains equal to two.
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It is obvious that the present solutions are physically realistic

only for a discrete set of values of the friction parameter, that is,

those values which yield integer values for n. For any other value of

the friction parameter, the optimum noninteger number of sides must be

replaced by one of the two nearest integer values, that which yields the

lower amount of drag. Finally, since the present solutions have been

obtained by direct methods, they necessarily exhibit a greater drag than

that of the variational solution associated with the same problem.

Therefore, it is of considerable engineering interest to extend this

analysis by lifting the arbitrary limitations imposed here on the class

of bodies being investigated. Since the order of magnitude of the friction

drag of a slender body is the same as that of the pressure drag and since

the present approach indicates that it is important to account for the

friction drag in determining the optimum transversal contour, it follows

that it is desirable that a variational approach be undertaken with due

consideration for both components of the drag, that is, the pressure urag

and the friction drag.
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APPEDIX

SIMULTANEOUS OPTIMIZATION OF THE LONGITUDINAL

AND TRANSVERSAL CONTOURS

In the previous sections, the transversal contour of the body was

optimized under the assumption that the longitudinal contour is conical.

If this restriction is eliminated, one can optimize the longitudinal and

the transversal contours simultaneously. As an example, consider a body

whose longitudinal contour is described by the power law

f(z) - zm  (51)

and whose transversal contour is a polygon. The evaluation of the drag

integral (10) leads to

2S (z •31 4fS (52)
+7

which simplifies to

K ?2 (1 + 2K) (53)

for a circular cone. Consequently, the ratio of the drag of the body under

consideration to that of the circular cone (subscript R) becomes

I 3 4KjA'

D+ 2 Ke

where
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1 ! x tan - :9 3 (55)

T n Tr

Clearly, then, the optimum combination of longitudinal and transversal

contours is supplied by the relationships

V . , ,- (56)

which can be rewritten in the form

a2(4m 1 4Kfg M

(2.w- i) x (a+ 1)

U3 1 2fvG 0(57)

z" m.' + 1

If these equations are regarded as linear and homogeneous in i/x and KP,

it becomes apparent that the optimum longitudinal r ,ntour is described by

K2(4m =3) 4

(2m- (m )

-0 (58)

M3 2

whose solution is the conical body

= 1 (59)
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Since the optimum transversal contour satisfies the relationship

x =(60)

Kf

the optimum number of sides and the associated drag ratio are given by

Kf - cot z13/2

(61)

D 3Kf2/3

D R  1 + 2Kf

provided that

~K f i (62)

Should the friction parameter not satisfy the above inequality, then

the transversal contour would either be a triangle or a circle while the

optimum longitudinal contour would be described by the first of Eqs. (56)

or (57). The simple manipulations, omitted for the sake of brevity, lead

to the following results:
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IT

Kfn =3 (63)

911 K rAF4n-3 Fm~m+ 1 2

Y- f

x 8

n m

Kf 1 (64)

f L [M 1J2
V_ Kf I + K

D i+2Xf[ -1 m +

Since the conclusions relative to the transversal contour are identical

with those derived for conical bodies, the pertinent result is represented

in Fig. 2. Concerning the longitudinal contour, the optimum exponent m is

plotted in Fig. 6 versus the friction parameter. Furthermore, the minimum

drag is represented in Fig. 7. From these graphs, it appears that the opti-

mum longitudinal contour follows the 3/4-power law for Kf = 0, is convex

for O < Kf ZO.47, is a straight line for 0.47 Z Kf < 1, and is concave for

Kf > 1. In conclusion, the effect of friction is to modify not only the
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optium transversal contour but also the optimum longitudinal contour to

a considerable degree.
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